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Structure of talk

• The first half consists of an overview of the submitted research project.

• The second half presents some of the independence results obtained so
far (informally).
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Constructive set theories and type theories

• Martin-Löf’s constructive type theories CTT, and

• Aczel-Myhill’s constructive set theories CST,

are the main formal systems for constructive mathematics (in the sense of
Bishop).

CTT and CST are (generalized) predicative.

In particular, the collection Pow(X) of subsets of a set X is not a set in these
systems.
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Intuitionistic set theory and topos logic

Two other important intuitionistic systems are:

• H. Friedman’s Intuitionistic Set Theory, IZF.

A system for set theory with intuitionistic rather than classical logic, but
‘as similar as possible’ to ZF.

• Topos logic = Higher-order Heyting Arithmetic, HHA.

The internal logic of elementary toposes.

IZF (resp. HHA) has powersets (resp. power-sorts) and unrestricted separa-
tion (resp. full comprehension).

So they are intuitionistic, but impredicative, systems.
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General motivations, I

Albeit much weaker than HHA and IZF, CST and CTT have shown to permit
the proof of high level results from

general topology;

functional analysis;

commutative algebra, algebraic geometry;

...

beside allowing for the formalization of Bishop’s CM.
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General motivations, II

It is then natural to try to understand the limits of these predicative systems.

Several independence results concerning CST, and in particular CZF (=
Aczel’s formulation of CST), have already been obtained

(Rathjen, Lubarsky, van den Berg & Moerdijk,...).

However, in almost every case, these results have established the indepen-
dence of a certain set-theoretical axiom from the remaining axioms of the
system.

The submitted project aimed at the identification of independence results
relative to standard fields as topology, algebra, algebraic geometry, etc.
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General motivations, III

Of course, independence results proved for IZF and/or HHA will often carry
over to CST and CTT.

In particular the goal is then to identify results

provable in IZF, or in HHA (i.e. ‘intuitionistically valid’),

that cannot be proved in CST, CTT.

In the second part of the talk, we shall discuss (very informally) two results
of this kind in the area of (point-free) topology.
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General motivations, IV

Use/meaning of these results:

• Proof-theoretic, reminiscent of Reverse Mathematics.

• Applications in classical mathematics:

(certain subsystems and extensions of) CZF and CTT can be seen as
internal languages of categories, as HHA w.r.t. toposes (cf. Simpson,
Streicher, ...). Therefore,...

• New notions: refinements and improvements of known ones. Ex: the
concept of locale (discussed below) w.r.t. the ordinary notion of topo-
logical space.

• Philosophical: at least for a particular kind of independence results, (dis-
cussed below), the results whose independence is proved can be regarded
as non-constructive rather than just underivable in the given system.
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Point-free topology

Over classical ZF, the following theorems cannot be proved:

• Tychonoff Theorem (⇔ AC);

• Hahn-Banach Theorem (⇐ AC);

• Gelfand Duality (⇐ AC);

• Stone-Čech Compactification (⇔ PIT );

• Gleason’s Covering Theorem (⇐ PIT );

• ...

All these (and many other) theorems become provable in full generality in
(ZF and) IZF, provided one replaces (the use of) topological spaces with (the
use of) locales.

Full generality: No restrictions (as instead in RM). Moreover, in most cases,

‘point-free (i.e. localic) argument + AC ⇒ usual version of T ’.
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Locales informally, I

Given a topological space (X,Ω(X)),

(Ω(X),
⋃
,∩, ∅, X)

is a (bounded) complete lattice with
∨
≡

⋃
, ∧ ≡ ∩.

Ω(X) also satisfies the infinite distributive law

U ∧
∨
i∈I

Vi =
∨
i∈I

(U ∧ Vi),

for U, Vi ∈ Ω(X).

A locale (or frame) is a complete lattice satisfying the infinite distributive
law.
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Locales informally, II

With a suitable notion of continuous function locales form a category Loc.

Even classically, locales are ‘many more’ than those that can be obtained as
Ω(X).

• E.g. every non-atomic complete Boolean algebra.

Locales have pleasant properties not enjoyed by topological spaces, so are of
interest also in ZF+AC: J. Isbell, A. Joyal, A. Simpson, ....

Constructive aspects: Joyal, Banaschewski & Mulvey, Johnstone, Martin-Löf
& Sambin, Coquand, Aczel, ...

Remark. L is a locale iff it is a complete Heyting algebra  Heyting-valued
models of constructive and intuitionistic set theories.

10



Point-free topology and constructive set theories, I

Locales allow then for proofs of the above mentioned classical theorems in
IZF, HHA (that, as a consequence, can be interpreted in any topos).

Does the same hold for CST, CTT?

T. Coquand has shown that point-free versions of

• Tychonoff Theorem,

• Hahn-Banach Theorem,

• Vietoris construction,

• ...

can be obtained in CST, CTT (cf. KGRPF-08).

11



Point-free topology and constructive set theories, II

We will shaw, that, on the other hand, by contrast with what happens in IZF,
HHA, the point-free versions of:

• Stone-Čech compactification in its full form,

• Gleason’s covering theorem,

cannot be proved in CZF, CTT as well as in several, even impredicative,
extensions of these systems.

12



Aczel’s CZF, I

The constructive Zermelo-Fraenkel set theory CZF is Aczel’s formulation of
CST.

CZF is formulated in the same (first-order) language of ZF; it uses intuition-
istic logic and has the following axioms and axiom schemes:

• Extensionality,

• Pairing,

• Union,

• Infinity,

• Set Induction: ∀x[(∀y ∈ x)ϕ(y)→ ϕ(x)]→ ∀xϕ(x),

• Restricted Separation (i.e., Separation for bounded formulae),

• Strong Collection,

• Fullness.
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Aczel’s CZF, II

Strong Collection For every set a, if (∀x ∈ a)(∃y) ϕ(x, y), then there is a set
b such that (∀x ∈ a)(∃y ∈ b) ϕ(x, y) and (∀y ∈ b)(∃x ∈ a) ϕ(x, y).

Strong Collection ⇒ Replacement, purely logically.

For sets a, b, let mv(ba) be the class of subsets r of a × b such that (∀x ∈
a)(∃y ∈ b) (x, y) ∈ r.

Fullness Given sets a, b there is a subset c of the class mv(ba) such that for
every r ∈ mv(ba) there is r0 ∈ c with r0 ⊆ r.

Myhill’s Exponentiation Axiom in particular follows by Fullness.

Exponentiation For sets a, b, the class of functions from a to b is a set.
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Aczel’s CZF, III

One has

• IZF = CZF + Sep + Pow

then
CZF $ IZF $ ZF.

Moreover,

CZF + EM = IZF + EM = ZF.

Remark. Although Pow(X) is not a set in CZF, it is a class, the class of
subsets of X.
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Troelstra’s Uniformity Principle

CZF is consistent with the following principles:

Troelstra’s principle of uniformity

1. if (∀x)(∃n ∈ ω)ϕ(x, n), then (∃n ∈ ω)(∀x)ϕ(x, n).

Every set is subcountable

2. (∀x)(∃U ∈ Pow(ω))(∃f)f : U � x

(van den Berg & Moerdijk, Lubarsky, Rathjen, Streicher, ...).
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The Generalized Uniformity Principle

By 1, 2 one gets the Generalized Uniformity Principle:

GUP: For every set a, if (∀x)(∃y ∈ a)ϕ(x, y), then (∃y ∈ a)(∀x)ϕ(x, y).

with which CZF is then consistent. In fact, various extensions of CZF, in-
cluding

CZF + (REA + PA) + Sep

are consistent with GUP.

Moreover, constructive type theory CTT is also consistent with a suitable
formulation of this principle (Coquand & Petit).

CZF∗ (resp. CTT∗) will denote any extension of CZF (resp. of CTT) that
is compatible with GUP.

17



Locales in CZF

For X any set with discrete topology,

Ω(X) = Pow(X).

A locale in CZF is a partially ordered class L, that has
∨
,∧, which satisfy the

infinite distributive law, and that has a set BL of generators:

every element of L is the join of a subset of BL.

In IZF, the two notions are equivalent.
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The Gleason cover of a compact regular space/locale, I

A space X is extremally disconnected iff

X = U∗ ∪ U∗∗,
for all U ∈ Ω(X), where U∗ is the largest open disjoint from U ;

lattice-theoretically, U∗ is given by U → ∅.

The Gleason cover of a compact regular space (equivalently, of a compact
Hausdorff space) is a pair

(γX, e : γX � X),

with γX a compact, regular and extremally disconnected space, and e a
continuous surjection that is minimal in a certain sense.
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The Gleason cover of a compact regular space/locale, II

• Over ZF, γX exists for every compact regular space X iff PIT.

• In a topos, or in IZF, γL can be constructed for every compact regular
locale L (Johnstone).

We shall see that, however, the existence of the Gleason cover of a compact
regular locale can be refuted in CZF∗+GUP, and is therefore not derivable in
CZF∗ (and similarly for CTT∗).
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Stone’s Lemma

A classical result of M. Stone states that:

the (compact) locale Idl(B) of ideals of a Boolean algebra B is extremally
disconnected if and only if B is complete.

This result also holds in topos logic, and gives the intuitionistic existence of
compact extremally disconnected locales.

It is used in the construction of the Gleason cover of a locale L:

γL ≡ Idl(L∗∗),
where L∗∗ is the Booleanization of L.
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Failure of Gleason, I

Recall that in CZF∗, a locale is carried by a proper class.

One cannot therefore consider the class of ideals over L.

The fact that, for L a locale, Idl(L) is not an admissible construction in CZF∗,
of course is not enough to conclude that the Gleason cover fails constructively
to exist.

We have to show that an object with the properties characterizing the Gleason
cover cannot exist.
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Failure of Gleason, II

In contrast with what entailed by Stone’s result we have:

Theorem. No non-degenerate locale L can be proved to be extremally dis-
connected and compact in CZF∗.

Proof (Sketch). We show that in CZF∗ + GUP the assumption that L is
extremally disconnected and compact is contradictory.

Let Ω ≡ Pow({0}), and assume L is extremally disconnected and compact.
Then,

∀p ∈ Ω, >L = (
∨
{>L : 0 ∈ p})∗ ∨ (

∨
{>L : 0 ∈ p})∗∗.

Using compactness and GUP, one shows that there is {x1, ..., xn} ⊆ BL, with,
for all p ∈ Ω,

xi ≤ (
∨
{>L : 0 ∈ p})∗ or xi ≤ (

∨
{>L : 0 ∈ p})∗∗,

for i = 1, ..., n, and such that >L ≤ x1 ∨ ... ∨ xn.
Assuming ¬(x1 = ⊥L) ∨ ... ∨ ¬(xn = ⊥L), one gets

(∀p ∈ Ω)(¬(0 ∈ p) or ¬¬(0 ∈ p)),

i.e. [R]DML holds.
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Failure of Gleason, III

As is easy to prove, [R]DML is inconsistent with GUP, so that

¬(¬(x1 = ⊥L) ∨ ... ∨ ¬(xn = ⊥L)).

This gives

¬¬(x1 = ⊥L &...& xn = ⊥L).

On the other hand, since L is non-degenerate, from >L ≤ x1∨ ...∨xn one gets

¬(x1 = ⊥L &...& xn = ⊥L),

so that L is not compact and extremally disconnected in CZF∗+GUP. �

We have therefore the following strong refutation of the existence of Gleason
covers.

Corollary. The Gleason cover of no (non-degenerate) compact regular locale
can be defined in CZF∗ (and similarly for CTT∗).
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Existence of Stone-Čech compactification, I

The Stone-Čech compactification of a space or locale X is its compact com-
pletely regular reflection, i.e., it is a continuous map

η : X → βX,

with βX compact and completely regular, which satisfies the following uni-
versal property:

X
η

- βX

Y

!fβ

?

f

-

for all compact completely regular Y , and all continuous f : X → Y .

Remark. This universal property gives a bijection Hom(X,Y ) ∼= Hom(βX, Y ),
for every compact completely regular Y .
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Existence of Stone-Čech compactification, II

As said, this compactification exists in a topos, and in IZF, for every locale
L.

In CZF+REA we have

Theorem. The Stone-Čech compactification βX of a locale X exists if, and
only if, Hom(X, [0,1]) is a set.

In particular, one has

Theorem. For every locally compact X, βX exists in CZF+sREA+DC.
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Existence of Stone-Čech compactification, III

Thus, in contrast with the Gleason cover, Stone-Čech compactification does
constructively exist for a class of locales. However:

Theorem. The Stone-Čech compactification of a non-degenerate Boolean
locale X cannot be defined in CZF∗.

To prove the theorem we need the following results:

Lemma. A bijection exists between the class of elements of any boolean
locale X and Hom(X,Pow({0,1})).

and

Theorem. The full subcategory of compact regular locales KRLoc is locally
small in CZF.

Remark. With PIT, KRLoc ↔ KHausSp.

27



Existence of Stone-Čech compactification, IV

Proof of the theorem. Assume X is a Boolean locale.

If βX existed, by the Theorem, Hom(βX,Pow({0,1})) would be a set in CZF.

Moreover, by the universal property of β,

Hom(X,Pow({0,1})) ∼= Hom(βX,Pow({0,1})).

Thus Hom(X,Pow({0,1})) would be a set too. By the Lemma, X would
then be a set in CZF∗. However, using the consistency of CZF∗ with GUP,
one may prove that no non-degenerate locale can be proved to have a set of
elements in CZF∗.

Thus, βX cannot exist in CZF∗. �

Corollary. For X Boolean, Hom(X,R), Hom(X, [0,1]) are proper classes in
CZF∗.
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A possible necessary condition for constructivity

A possible necessary condition for an argument to be defined constructive
is that it may be formulated within an extension of CZF or CTT that is
compatible with GUP (i.e., in CZF∗ or CTT∗).

The systems IZF, HHA are not among these extensions.

Remark. Far from being a sufficient condition:

CZF + Sep (∼= 2PA)

is compatible with GUP. So the given one is a very liberal criterion.

For the constructivist who accepts the given condition for constructivity, the
independence results recalled above can be read as saying that Stone-Čech
compactification of a Boolean locale, or the existence of Gleason covers,
although topos-valid, are non-constructive theorems.

29


